Upper Extremity Motion Assessment In Adult Ischemic Stroke
884cd2cafba30187394d9ea666a86388

Computational Analysis of Upper Extremity Movements for People Post-stroke
Risk Assessment and Management of Repetitive Movements and Exertions of Upper Limbs
Guides to the Evaluation of Permanent Impairment Stroke Recovery and Rehabilitation
UPPER LIMB KINEMATICS IN STROKE AND HEALTHY CONTROLS USING TARGET-TO-TARGET TASK IN VIRTUAL REALITY
Rehabilitation of the Hand and Upper Extremity, 2-Volume Set E-Book
Hand Function Diagnosis and Treatment of Movement Impairment Syndromes
E-Book
ESTIMATING FUGL-MEYER UPPER EXTREMITY ASSESSMENT SCORE FROM KINEMATIC MOVEMENT DATA OBTAINED DURING STROKE REHABILITATION IN VIRTUAL REALITY
Spasticity Movement Therapy in Hemiplegia
Brunnstrom's Movement Therapy in Hemiplegia
An Extending Fitts' Law for Human Upper Limb Performance
Evaluation
Neurorehabilitation of the Upper Limb Across the Lifespan
Towards Automated Disability Assessment of Upper Limb Movement After Stroke
Management of Spastic Conditions of the Upper Extremity, An Issue of Hand Clinics E-Book
Fundamentals of Hand Therapy
Pedretti's Occupational Therapy - E-Book
Motion Analysis Assessment of Upper Extremity Motor Ability
Rehabilitation of the Hand and Upper Extremity, E-Book
Arm Rehabilitation Measurement
A guide to the evaluation of permanent impairment of the extremities and back
Finding Groups in Data
Progress in Motor Control
Low Bandwidth Inertial Sensors For Upper Extremity Monitoring During Rehabilitation
World Congress on Medical Physics and Biomedical Engineering 2018
Motion Analysis System for Use in Upper Extremity Neuroprostheses Assessments
OCCUPATIONAL THERAPY EFFICACY ON UPPER-EXTREMITY FUNCTIONAL OUTCOMES AFTER STROKE
Musculoskeletal Disorders and the Workplace
The Glass Castle
Physical Disabilities
Converging Clinical and Engineering Research on Neurorehabilitation
Clinical Pathways: An Occupational Therapy Assessment for Range of Motion & Manual Muscle Strength Neurological Physical Therapy
Repetitive Motion Disorders of the Upper Extremity
Constraint-induced Movement Therapy
Converging Clinical and Engineering Research on Neurorehabilitation
Hand and Upper Extremity Rehabilitation
Upper Extremity Motion Assessment in Adult Ischemic Stroke Patients: A 3-D Kinematic Model
Stroke Rehabilitation

Computational Analysis of Upper Extremity Movements for People Post-stroke

The book reports on advanced topics in the areas of neurorehabilitation research and...
practice. It focuses on new methods for interfacing the human nervous system with electronic and mechatronic systems to restore or compensate impaired neural functions. Importantly, the book merges different perspectives, such as the clinical, neurophysiological, and bioengineering ones, to promote, feed and encourage collaborations between clinicians, neuroscientists and engineers. Based on the 2016 International Conference on Neurorehabilitation (ICNR 2016) held on October 18-21, 2016, in Segovia, Spain, this book covers various aspects of neurorehabilitation research and practice, including new insights into biomechanics, brain physiology, neuroplasticity, and brain damages and diseases, as well as innovative methods and technologies for studying and/or recovering brain function, from data mining to interface technologies and neuroprosthetics. In this way, it offers a concise, yet comprehensive reference guide to neurosurgeons, rehabilitation physicians, neurologists, and bioengineers. Moreover, by highlighting current challenges in understanding brain diseases as well as in the available technologies and their implementation, the book is also expected to foster new collaborations between the different groups, thus stimulating new ideas and research directions.

Risk Assessment and Management of Repetitive Movements and Exertions of Upper Limbs

This book (vol. 2) presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a triennially organized joint meeting of medical physicists, biomedical engineers and adjoining health care professionals. Besides the purely scientific and technological topics, the 2018 Congress will also focus on other aspects of professional involvement in health care, such as education and training, accreditation and certification, health technology assessment and patient safety. The IUPESM meeting is an important forum for medical physicists and biomedical engineers in medicine and healthcare learn and share knowledge, and discuss the latest research outcomes and technological advancements as well as new ideas in both medical physics and biomedical engineering field.

Guides to the Evaluation of Permanent Impairment

Restoring human motor and cognitive function has been a fascinating research area during the last century. Interfacing the human nervous system with electro-mechanical rehabilitation machines is facing its crucial passage from research to clinical practice, enhancing the potentiality of therapists, clinicians and researchers to rehabilitate, diagnose and generate knowledge. The 2012 International Conference on Neurorehabilitation (ICNR2012) brings together researchers and students from the fields of Clinical Rehabilitation, Applied Neurophysiology and Biomedical Engineering, covering a wide range of research topics: · Clinical Impact of Technology · Brain-Computer Interface in Rehabilitation · Neuromotor & Neurosensory modeling and processing · Biomechanics in Rehabilitation · Neural Prostheses in Rehabilitation · Neuro-Robotics in Rehabilitation · Neuromodulation
Read Book Upper Extremity Motion Assessment In Adult Ischemic Stroke

This Proceedings book includes general contributions (2-page extended abstracts) from oral and poster sessions, as well as from special sessions. A section is also dedicated to pre-post conference workshops, including invited contributions from internationally recognized researchers. A selection of most relevant papers have been considered for publication in international journals (e.g. JNER, JACCES,), therefore they will appear soon in their extended versions in Special Issues. These Proceedings also contain brief descriptions of keynote lectures from invited world-class professors, and a number of thematic round tables covering technological and institutional issues.

Stroke Recovery and Rehabilitation

Accurate assessment of hand function is critical to any treatment regimen of the hand compromised patient. Hand Function is a practical, clinical book which provides the knowledge needed to distinguish the different dimensions of hand function, particularly impairment, disability and handicap. Beginning with an overview of basic principles and examination, subsequent chapters evaluate the hand function in specific afflicted populations, including the rheumatoid patient, the stroke patient, the trauma patient, the geriatric patient and the pediatric patient, as well as special populations such as diabetes mellitus patients and musicians. An appendix containing hand function scales essential to the assessment of disability is also included. Rheumatologists, physiatrists, hand surgeons, orthopedists, occupational therapists and physical therapists will all find Hand Function a useful and valuable addition to their clinical references.

UPPER LIMB KINEMATICS IN STROKE AND HEALTHY CONTROLS USING TARGET-TO-TARGET TASK IN VIRTUAL REALITY

Rehabilitation of the Hand and Upper Extremity, 2-Volume Set E-Book

This book, Physical Disabilities - Therapeutic Implications, presents reports on a wide range of areas in the field of neurobiological disabilities, including movement disorders (Uner Tan syndrome, genetic and environmental influences, chronic brain damage, stroke, and pediatric disabilities) related to physical and stem cell therapy. Studies are presented from researchers around the world, looking at aspects as wide-ranging as the genetics, wheelchair, and robotics behind the conditions to new and innovative therapeutic approaches.

Hand Function
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Cluster analysis is the increasingly important and practical subject of finding groupings in data. The authors set out to write a book for the user who does not necessarily have an extensive background in mathematics. They succeed very well." —Mathematical Reviews "Finding Groups in Data [is] a clear, readable, and interesting presentation of a small number of clustering methods. In addition, the book introduced some interesting innovations of applied value to clustering literature." —Journal of Classification "This is a very good, easy-to-read, and practical book. It has many nice features and is highly recommended for students and practitioners in various fields of study." —Technometrics

An introduction to the practical application of cluster analysis, this text presents a selection of methods that together can deal with most applications. These methods are chosen for their robustness, consistency, and general applicability. This book discusses various types of data, including interval-scaled and binary variables as well as similarity data, and explains how these can be transformed prior to clustering.

Diagnosis and Treatment of Movement Impairment Syndromes- E-Book

This thesis compares the quantifiable data from a low bandwidth inertial sensor to that of a high bandwidth, high accuracy video based motion capture system for assessing upper extremity motion. The goal is to develop a system which can collect and characterize motion data that is comparable to current state of the art research equipment using only commercially viable products. First a low cost, low bandwidth inertial measurement unit (IMU) sensor that can be strapped to a person's wrist is interfaced via I2C connection to an Arduino board. Custom firmware on the Arduino is used to collect relevant motion data pertaining to the person's upper extremity. This data is sent to a LabVIEW interface on a computer where it can be monitored in real time by a physician. For comparison, data from the exercises is also collected from the Eagle motion capture system from Movement Analysis Co. A side by side comparison is given between the IMU sensor and the motion capture system. The same IMU sensor system, firmware and software, is then implemented on a standard weighted bar, a common rehabilitation device. Using a motor driven weight and closed loop feedback control, the system can adjust the weight distribution of the bar. The sensitivity and balance of the bar can all be fine-tuned for specific patient needs. The goal is to allow clinicians to provide personalized training and exercise adjustments, while simultaneously monitoring a patient's performance in real time for a more targeted rehabilitation. When analyzing wearable IMU sensors, the correspondence of individual features extracted varies depending on several aspects of the sensors and motion being performed. In particular, mean acceleration does not correspond well to the camera system. Linear negative mean jerk metric had high
correspondence, particularly for cases with less smooth motion. RMS acceleration magnitude showed high correspondence when not corrupted by measurement error. Dominant frequencies only show high correspondence when noticeable shaking is present, and may not be useful otherwise. The frequencies also tend to appear on specific axes, which is dependent on the motion being performed.

ESTIMATING FUGL-MEYER UPPER EXTREMITY ASSESSMENT SCORE FROM KINEMATIC MOVEMENT DATA OBTAINED DURING STROKE REHABILITATION IN VIRTUAL REALITY

A Doody's Core Title 2012 Stroke Recovery and Rehabilitation is the new gold standard comprehensive guide to the management of stroke patients. Beginning with detailed information on risk factors, epidemiology, prevention, and neurophysiology, the book details the acute and long-term treatment of all stroke-related impairments and complications. Additional sections discuss psychological issues, outcomes, community reintegration, and new research. Written by dozens of acknowledged leaders in the field, and containing hundreds of tables, graphs, and photographic images, Stroke Recovery and Rehabilitation features: The first full-length discussion of the most commonly-encountered component of neurorehabilitation Multi-specialty coverage of issues in rehabilitation, neurology, PT, OT, speech therapy, and nursing Focus on therapeutic management of stroke related impairments and complications An international perspective from dozens of foremost authorities on stroke Cutting edge, practical information on new developments and research trends Stroke Recovery and Rehabilitation is a valuable reference for clinicians and academics in rehabilitation and neurology, and professionals in all disciplines who serve the needs of stroke survivors.

Spasticity

Intended for physical therapy students and practitioners, occupational therapy practitioners, physical medicine and rehabilitation practitioners and rehabilitation nurses, this book discusses Brunnstrom's classic theory and technique. Features new to this edition include new illustrations, a chapter discussing Brunnstrom's approach in the light of modern thought and an appendix detailing the administration of sensorimotor assessment.

Movement Therapy in Hemiplegia

Physical therapy services may be provided alongside or in conjunction with other medical services. They are performed by physical therapists (known as physiotherapists in many countries) with the help of other medical professionals. This book consists of 12 chapters written by several professionals from different parts of the world. The book covers different subjects, such as the effects of physical
Read Book Upper Extremity Motion Assessment In Adult Ischemic Stroke

therapy, motor imagery, neuroscience-based rehabilitation for neurological patients, and applications of robotics for stroke and cerebral palsy. We hope that this book will open up new directions for physical therapists in the field of neurological physical therapy.

Brunnstrom's Movement Therapy in Hemiplegia

In industrialised countries, musculo-skeletrical disorders of the upper limbs represent one of the commonest work-related diseases. All working activities habitually requiring repetitive upper limb movements and exertions represent a potential risk for these disorders under certain conditions. This practical manual provides a clear and detailed solution to the problem of assessing and consequently managing these risks in conformity with European Union legislation covering the safety and protection of workers' health. The book contains many tables, diagrams and schedules, enhancing its practical value. The methods it proposes for analyzing and designing or redesigning jobs and tasks do not require sophisticated equipment and are largely based on situations encountered in large manufacturing factories. Since risk analysis also concerns how jobs and tasks are organized, many concepts and terms are defined that prevention experts can share with those responsible for planning and organizing manufacturing activities on the shop floor.

An Extending Fitts' Law for Human Upper Limb Performance Evaluation

Authored by an acknowledged expert on muscle and movement imbalances, this well-illustrated book presents a classification system of mechanical pain syndrome that is designed to direct the exercise prescription and the correction of faulty movement patterns. The diagnostic categories, associated muscle and movement imbalances, recommendations for treatment, examination, exercise principles, specific corrective exercises, and modification of functional activities for case management are described in detail. This book is designed to give practitioners an organized and structured method of analyzing the mechanical cause of movement impairment syndrome, the contributing factors, and a strategy for management. * Provides the tools for the physical therapist to identify movement imbalances, establish the relevant diagnosis, develop the corrective exercise prescription and carefully instruct the patient about how to carry out the exercise program. * Authored by the acknowledged expert on movement system imbalances. * Covers both the evaluation process and therapeutic treatment. * Detailed descriptions of exercises for the student or practitioner. * Includes handouts to be photocopied and given to the patient for future reference.

Neurorehabilitation of the Upper Limb Across the Lifespan

Constraint-Induced Movement therapy (CI therapy) is a behavioral approach to
neurorehabilitation based on a program of neuroscience experiments conducted with monkeys. Evidence has accumulated to support the efficacy of CI therapy for rehabilitating hemiparetic arm use in individuals with chronic stroke. This book addresses the related topics.

Towards Automated Disability Assessment of Upper Limb Movement After Stroke

Management of Spastic Conditions of the Upper Extremity, An Issue of Hand Clinics E-Book

Pedretti’s Occupational Therapy: Practice Skills for Physical Dysfunction, 8th Edition prepares you for occupational therapy practice with adults who have physical disabilities. This cornerstone text provides a foundation for the development of clinical reasoning skills in a comprehensive, case-based learning approach to physical dysfunction. New full color photos and helpful pedagogy, including threaded case studies, OT Practice Notes, ethical considerations, and end-of-chapter review questions, reinforce learning, enhance retention, and prompt you to apply principles in a clinical setting. UNIQUE! Threaded case studies, woven throughout each chapter, help you apply concepts to real-life clinical practice. UNIQUE! Ethical Considerations boxes highlight the key ethical concerns of treatment options so you can practice ethically. UNIQUE! OT Practice Notes convey important considerations for professional practice. Focuses on the occupational therapist’s role in health and wellness, which the OTA has identified as a key practice area in the 21st century. Information on prevention, rather than simply intervention or treatment, shows how OTs can take a proactive role in patient care. Evidence-based content included throughout, especially in regards to evaluation and intervention. Content on occupational therapy’s commitment to considering cultural and ethnic diversity in every chapter. Key terms, chapter outlines, chapter objectives lay out the information you can expect to learn from each chapter.

Fundamentals of Hand Therapy

Human motor behavior is complex and is challenging to understand. Fitts' Law presented a relationship between speed, accuracy, amplitude of movement and target size in upper extremity tasks. In this paper, Fitts' Law was extended from one-dimensional motion to two-dimensional motion in the polar coordinate system for the human upper limb performance. Based on this, a set of indices were proposed. The index of difficulty and the index of performance were introduced as the general indices St for the quality measure of plane pointing movement, which is a basic functional action of upper-limb in human daily life. Five healthy subjects were asked to perform six pointing tasks with different indices of difficulty. All movements were recorded using a motion analysis system. The movement quality was evaluated using
Movement quality assessment has been integral to appraise physical therapy in upper limb rehabilitation after stroke. The outlook is attractive because it provides a non-invasive insight to movement quality for the purpose of benchmarking the level of impairment before the rehabilitation begins and measuring the extent of recovery afterwards. However, a clinically acceptable measurement technique has been limited to laboratory setup with complex subject preparation. The attachment of numerous retro-reflective markers is time consuming and requires careful palpation on bare skin to record movements. The recorded marker positions need to be manually labeled in post-processing to interpret the movements according to accepted clinical model. This laboratory setup would require a highly skilled bio-mechanics' scientist and therapist to locate the anatomical landmarks and to analyze the kinematics data. Furthermore, the cost and complexity of the setup limits the amount of assessment replication. Recently, off-the-shelf marker-less motion capture becomes available and provides plausible joint estimation in form of skeletal data in real-time. This feature is particularly attractive especially for upper limb assessment due to multiple joints required to be monitored over time. Moreover, it trades off cost, complexity and accuracy of the assessment. Multiple researches have reported acceptable accuracy in joint angles estimation in various task similar to the existing stroke assessment task. These reports had inspired this research towards automating the kinematic disability assessment for stroke patients. Firstly, an extensive literature review was conducted in the beginning of this research to discover the gaps in current kinematic assessment. It revealed the importance of determining the extent of compensation in stroke patients which was overlooked when assessing end-point movement. Particularly, reaching and drawing assessment tasks which were ubiquitous in evaluating robotic rehabilitation outcomes lack the compensatory movement measure. Kinematic result of patient's hand movement can be misleading if the extent of joint coordination and torso compensation are not taken into account. While previous studies in marker based setting have provided a number of parameters to determine the extent of compensation during assessment, such similar work in marker-less setting was non-existent. Therefore, this research investigated the use of marker-less motion capture to determine the extent of compensation in existing clinically-accepted assessment tasks to provide further insight to the outcomes of the assessment. The excessive movement of the torso when performing assessment tasks that require arm-forearm coordination is typical in stroke patients. Therefore, a three dimensional measurement model which explains the adaptation of this compensatory strategy is essential to determine the extent of motor recovery. A Torso Principal Component Analysis (PCA) Frame model was developed utilizing
Kinect’s joint prediction as a proposal to assess torso orientation over time. By re-orientating and aligning the axes to the clinically accepted torso orientation model, all the independent torso angles can be decomposed and reported as parameters to represent compensatory behavior. The Torso PCA Frame model was first evaluated by parametrizing its distribution in the assessment session as attributes to predict normal and compensatory behavior in artificial stroke movement setting. Healthy participants were fitted with elbow brace to limit arm-forearm coordination which may artificially induce compensatory torso movements to complete the task. They performed gross movements typical in stroke assessment and their torso distribution over the session were recorded. Results show that the accuracy of the Torso PCA Frame model was at 98.7% and were suitable as parameters to delineate compensation in that setting. To perform comparison with clinically accepted data, the Torso PCA Frame model was then evaluated by comparing the torso angle with marker-based clinical model and Kinect’s intrinsic chest orientation to assess the torso movement. Healthy participants were recruited to perform circle tracing (CT) and point-to-point (PTP) planar tasks in simultaneous setting of marker-based and marker-less system. Results showed that the torso angles computed using Torso PCA Frame model were insignificantly different to clinical measures in PTP task (0.103±0.881° in forward bending, 1.631±1.456° in lateral flexion and −3.488±2.765° in axial rotation) but forward bending was significantly different in CT task (3.700±0.473°). Extended evaluation also shows that the mean of axial rotation angles were significantly similar across both tasks (F2,18 =1.800, p=.194 in PTP task and F2,18 =1.876, p=.182) in marker-based and marker-less setting. Torso PCA frame model was evaluated afterwards against healthy participants which were fitted with elbow brace and strapped across the chest to emulate the limited coordination of stroke patients. Five participants were randomly chosen to emulate this behavior and the results showed that the forward bending angles were significantly different between normal and artificial stroke participants in PTP task (−7.532±4.171°, p=.001) but not in CT task (−.261±4.172°, p=.899). To investigate the usability of Torso PCA Frame model to detect torso compensation, the Torso PCA model was evaluated in stroke participants to assess their movements performing circle and point-to-point tracing. Results showed that forward bending and lateral flexion were significantly different between normal and stroke patients in both tasks (−12.130±4.211°, p

Rehabilitation of the Hand and Upper Extremity, E-Book

This ground-breaking book brings together researchers from a wide range of disciplines to discuss the control and coordination of processes involved in perceptually guided actions. The research area of motor control has become an increasingly multidisciplinary undertaking. Understanding the acquisition and performance of voluntary movements in biological and artificial systems requires the integration of knowledge from a variety of disciplines from neurophysiology to biomechanics.
Arm Rehabilitation Measurement

A guide to the evaluation of permanent impairment of the extremities and back

Background and Aims: Assessing impairment and forming predictions about recovery are big challenges in neurorehabilitation. In clinical studies, effectiveness is usually assessed with established clinical scales, like the Fugl-Meyer Upper Limb Assessment (FMA). Although the FMA shows great specificity and validity, it is time-consuming, subjective and vulnerable to ceiling effects. Virtual reality (VR)-based setups equipped with motion capture systems could overcome these limitations by automating assessment, requiring that FMA scores can be reliably predicted from kinematic data.

Methods: To test this hypothesis, we use movement quality parameters that were extracted from kinematic data recorded during rehabilitation sessions performed with the Rehabilitation Gaming System (RGS), a VR rehabilitation tool, that uses the Microsoft Kinect for motion capture. The protocol considered here asks patients to intercept spheres on a computer screen using their upper limbs. In this preliminary analysis, we performed a multivariate regression using clinical data from 98 stroke patients who completed 191 rehabilitation sessions with RGS.

Results: We show that the best multivariate regression model for predicting FMA (intercept: 0.57 prediction range: 18.9 to 55.9, standard deviation: 11.96, R^2: 0.47) includes the predictors finger flexion (β: 0.41) and distance covered (β: 0.17). However, the extent to which patients react fast and appropriate to training related events, or reaction strength, is the strongest predictor of FMA scores in all models tested (β: 0.19 to 0.52).

Conclusions: These results highlight the predictive power of kinematic data collected during unsupervised motor training and provide insight into new factors underlying recovery.

Finding Groups in Data

Clinical Pathways, an exciting first edition, helps students learn how to proficiently conduct range of motion (ROM) and manual muscle (MMT) assessment for the main joint structures of the body. Focusing heavily on clinical application, the text also provides a novel, OT-focused “Clinical Pathways of Assessment” model that connects physical assessment with a clinical decision-making process. This model helps students develop the skills to effectively evaluate a client through an occupational profile and performance. Client-centered outcome measures are used to assess the client’s functional ability in the performance of their daily occupations. Ultimately, using this framework will help to prepare for the process of designing and modifying the treatment plan to achieve optimum results.
This practical resource blends the technical and clinical skills and knowledge of hand surgery and hand therapy for the treatment of common medical conditions affecting the upper extremity. The book covers conservative management, surgical procedures, and postoperative management for these conditions, along with their purpose and rationale. Complications associated with procedures are also addressed. The new edition covers not only the hand, but also features expanded coverage of the wrist, elbow, and shoulder. -- Provided by publisher.

Low Bandwidth Inertial Sensors For Upper Extremity Monitoring During Rehabilitation

A comprehensive guide to managing spastic hypertonia after brain injury and the first full overview of this area. The ideal reference for therapeutic interventions that optimise arm and hand function to support goal achievement. An extensive clinical manual for neurological practice, a key reference for students and qualified practitioners, and a valuable resource for all occupational therapists and physiotherapists working with brain-injured clients.

World Congress on Medical Physics and Biomedical Engineering 2018

The AMA established a guide for the rating of physical impairment of the various organ systems which provides clinically sound and reproducible criteria for rating permanent impairment. Contents include: impairment evaluation; records and reports; the musculoskeletal system; the nervous system; the respiratory system; the cardiovascular system; the hematopoietic system; the visual system; ear, nose, throat, and related structures; the digestive system; the urinary and reproductive systems; the endocrine system; the skin; mental and behavioral disorders; pain.

Motion Analysis System for Use in Upper Extremity Neuroprostheses Assessments

This pioneering work defines spasticity in the broad context of Upper Motor Neuron Syndrome and focuses not on a single component, but on the entire constellation of conditions that make up the UMNS and often lead to disability. Spasticity: Diagnosis and Treatment clearly defines the process for the diagnosis of spasticity, the basic science behind its pathophysiology, the measurement tools used for evaluation, and reviews the available treatment options. Divided into five sections, this comprehensive clinical resource provides a roadmap for assessing the complicated picture of spasticity and choosing the appropriate interventions. Therapies including oral medications, intrathecal baclofen, botulinum toxin and phenol, and surgical options are thoroughly discussed, as are non-medical therapies and the role of the emerging technologies. The full spectrum of diseases involving spasticity in adults.
and children and the unique diagnostic and management challenges they present is addressed by experienced clinicians. This text is a one-stop source for physicians, therapists and other members of the spasticity management team tasked with the goal of improving patient care and outcomes.

OCCUPATIONAL THERAPY EFFICACY ON UPPER-EXTREMITY FUNCTIONAL OUTCOMES AFTER STROKE

Musculoskeletal Disorders and the Workplace

With the combined expertise of leading hand surgeons and therapists, Rehabilitation of the Hand and Upper Extremity, 6th Edition, by Drs. Skirven, Osterman, Fedorczyk and Amadio, helps you apply the best practices in the rehabilitation of hand, wrist, elbow, arm and shoulder problems, so you can help your patients achieve the highest level of function possible. This popular, unparalleled text has been updated with 30 new chapters that include the latest information on arthroscopy, imaging, vascular disorders, tendon transfers, fingertip injuries, mobilization techniques, traumatic brachial plexus injuries, and pain management. An expanded editorial team and an even more geographically diverse set of contributors provide you with a fresh, authoritative, and truly global perspective while new full-color images and photos provide unmatched visual guidance. Access the complete contents online at www.expertconsult.com along with streaming video of surgical and rehabilitation techniques, links to Pub Med, and more. Provide the best patient care and optimal outcomes with trusted guidance from this multidisciplinary, comprehensive resource covering the entire upper extremity, now with increased coverage of wrist and elbow problems. Apply the latest treatments, rehabilitation protocols, and expertise of leading surgeons and therapists to help your patients regain maximum movement after traumatic injuries or to improve limited functionality caused by chronic or acquired conditions. Effectively implement the newest techniques detailed in new and updated chapters on a variety of sports-specific and other acquired injuries, and chronic disorders. Keep up with the latest advances in arthroscopy, imaging, vascular disorders, tendon transfers, fingertip injuries, mobilization techniques, traumatic brachial plexus injuries, and pain management See conditions and treatments as they appear in practice thanks to detailed, full-color design, illustrations, and photographs. Access the full contents online with streaming video of surgical and rehabilitation techniques, downloadable patient handouts, links to Pub Med, and regular updates at www.expertconsult.com. Get a fresh perspective from seven new section editors, as well as an even more geographically diverse set of contributors.

The Glass Castle

Every year workers' low-back, hand, and arm problems lead to time away from jobs
and reduce the nation's economic productivity. The connection of these problems to workplace activities—from carrying boxes to lifting patients to pounding computer keyboards—is the subject of major disagreements among workers, employers, advocacy groups, and researchers. Musculoskeletal Disorders and the Workplace examines the scientific basis for connecting musculoskeletal disorders with the workplace, considering people, job tasks, and work environments. A multidisciplinary panel draws conclusions about the likelihood of causal links and the effectiveness of various intervention strategies. The panel also offers recommendations for what actions can be considered on the basis of current information and for closing information gaps. This book presents the latest information on the prevalence, incidence, and costs of musculoskeletal disorders and identifies factors that influence injury reporting. It reviews the broad scope of evidence: epidemiological studies of physical and psychosocial variables, basic biology, biomechanics, and physical and behavioral responses to stress. Given the magnitude of the problem—approximately 1 million people miss some work each year—and the current trends in workplace practices, this volume will be a must for advocates for workplace health, policy makers, employers, employees, medical professionals, engineers, lawyers, and labor officials.

Physical Disabilities

Wearable sensors have been beneficial in assessing motor impairment after stroke. Individuals who have experienced stroke may benefit from the use of wearable sensors to quantify and assess quality of motions in unobserved environments. Seven individuals participated in a study wherein they performed various gestures from the Fugl-Meyer Assessment (FMA), a measure of post-stroke impairment. Participants performed these gestures while being monitored by wearable sensors placed on each wrist. A series of MATLAB functions were written to process recorded sensor data, extract meaningful features from the data, and prepare those features for further use with various machine learning techniques. A combination of linear and nonlinear regression was applied to frequency domain values from each gesture to determine which can more accurately predict the time spent performing the gesture, and the associated gesture FMA score. General performance suggests that linear regression techniques appear to better fit paretic gestures, while nonlinear regression techniques appear to better fit non-paretic gestures. A use of classifier techniques were used to determine if a classifier can distinguish between paretic and non-paretic gestures. The combinations include determining if a higher performance is obtained through the use of either accelerometer, rate gyroscope, or both modalities combined. Our findings indicate that, for upper-extremity motion, classifiers trained using a combination of accelerometer and rate gyroscope data performed the best (accuracy of 73.1%). Classifiers trained using accelerometer data alone and rate gyroscope data alone performed slightly worse than the combined data classifier (70.2% and 65.7%, respectively). These results suggest specific features and methods suitable for the quantification of impairment after stroke.
Converging Clinical and Engineering Research on Neurorehabilitation

Objective: Virtual reality technique for kinematic assessment has rarely been used in evaluating motor function in stroke despite its availability as a training device in stroke rehabilitation. The aim is to discriminate the upper limb movements between individuals with stroke and healthy controls using kinematic variables from target-to-target task in virtual reality.

Methods: Sixty-seven participants (mean age of 65.7) extracted from the Stroke Arm Longitudinal Study at Gothenburg University SALGOT cohort of non-selected individuals within the first year of stroke, subdivided into moderate (31-57 points) and mild (58-65 points) stroke impairment based on Fugl-Meyer Assessment of Upper Extremity score along with 43 healthy controls performed the target-to-target pointing task. Using a haptic stylus, participants pointed at 32 circular targets that appeared successively in a virtual 3D space to make them disappear. Kinematic parameters captured by the stylus were movement time, velocities and smoothness of movement. Kruskal-Wallis and Mann-Whitney U tests were used to determine if significant differences were present between moderate and mild stroke impairment and healthy controls.

Results: Movement time and mean velocity were discriminative between groups with moderate and mild stroke impairment and healthy controls. The movement time was longer and mean and peak velocity lower for individuals with stroke. The number of velocity peaks, representing smoothness, was higher in stroke groups compared to controls. Movement trajectories in stroke more frequently showed clustering close to the target.

Conclusion: The target-to-target pointing task can provide valuable and specific information about sensorimotor impairment of the upper limb following stroke.

Clinical Pathways: An Occupational Therapy Assessment for Range of Motion & Manual Muscle Strength

Emphasizes the development of clinical reasoning skills, describing the components of the evaluation process and addressing how to decide what to evaluate. Covers a broad array of common diagnoses seen in hand therapy, including shoulder and elbow disorders, peripheral nerve problems, wrist and hand fractures, tendonitis and tendonosis, finger sprains and deformities, tendon injuries, arthritis, burns, infections, ganglion cysts, stiffness, Dupuytrens, and pediatric and geriatric hand problems. Diagnostic-specific information and treatment guidelines follow a consistent format: Overview Diagnosis and pathology Timelines and healing Anatomy Treatment (non-operative and/or operative) Questions to ask the doctor What to say to clients Evaluation tips Diagnosis-specific information that affects clinical reasoning Tips from the field Precautions and concerns Role of therapy assistants Case examples Offers topics to use as mental prompts when working in the clinical setting: Questions to ask the doctor What to say to clients Tips from the field Precautions and concerns Over 400 illustrations in the text and on the CD
demonstrate important concepts. Case studies in the common diagnoses chapters demonstrate the use of clinical reasoning and highlight the "human" side of each client encounter. Clinical pearls and precautions share advice from the author and contributors, learned from years of clinical experience. Describes the role of the therapy assistant with the client, showing how the therapy assistant may be included in the therapy process. Glossary includes key terms from the text, offering easy access to definitions of key terms. CD provides samples of hand therapy exercises and clinical forms that may be used with clients.

Neurological Physical Therapy

As part of a larger evaluative study of the effects of botulinum toxin type A (BTA) in ischemic stroke patients, a kinematic model of the trunk and upper extremities (UE) has been developed, The 3-D model provides a comprehensive method of assessing UE motion during performance tasks including exercises in reaching, grasping, and releasing, The 17-marker system tracks UE motion at a rate of 120 SPS with 7 infrared CCD cameras, The biomechanical model developed for the system allows expression of torso, shoulder, elbow, and wrist motion in terms of Euler expressions, Concurrent EMG data is used to confirm periods of co-contraction and spasticity during planned movement, Preliminary trials with the system indicate sufficient fidelity for continued clinical trials.

Repetitive Motion Disorders of the Upper Extremity

Journalist Walls grew up with parents whose ideals and stubborn nonconformity were their curse and their salvation. Rex and Rose Mary and their four children lived like nomads, moving among Southwest desert towns, camping in the mountains. Rex was a charismatic, brilliant man who, when sober, captured his children's imagination, teaching them how to embrace life fearlessly. Rose Mary painted and wrote and couldn't stand the responsibility of providing for her family. When the money ran out, the Walls retreated to the dismal West Virginia mining town Rex had tried to escape. As the dysfunction escalated, the children had to fend for themselves, supporting one another as they found the resources and will to leave home. Yet Walls describes her parents with deep affection in this tale of unconditional love in a family that, despite its profound flaws, gave her the fiery determination to carve out a successful life. -- From publisher description.

Constraint-induced Movement Therapy

This 2nd edition remains the only comprehensive evidence-based text on the Occupational Therapy management of the stroke patient. The book is based on the most up-to-date research on stroke rehabilitation and presents its content in a holistic fashion, combining aspects of background medical information, samples of functionally based evaluations, and treatment techniques and interventions. There
are chapters on specific functional aspects of living after stroke, such as driving, sexuality, mobility and gait, and self-care. Instructor resources are available; please contact your Elsevier sales representative for details. Case studies are featured in every chapter to help the reader understand how concepts apply to the real world. 2 chapters that feature the true stories of stroke victims, presenting occupational therapy situations from the point of view of the patient. Key terms, chapter objectives, and review questions help students better understand and remember important information. 7 new chapters make this text more comprehensive than ever!

Psychological Aspects of Stroke Rehabilitation Improving Participation and Quality of Life Through Occupation The Task-Oriented Approach to Stroke Rehabilitation Approaches to Motor Control Dysfunction: An Evidence-Based Review Vestibular Rehabilitation and Stroke How Therapists Think: Exploring Clinician's Reasoning When Working With Clients Who Have Cognitive and Perceptual Problems Following Stroke A Survivor's Perspective II: Stroke Reflects the current terminology and categorization used by the WHO and the new AOTA Practice Framework so students will be equipped with the latest standards when they enter the workforce. Updated medication chart presents the latest drugs used in stroke rehabilitation.

Converging Clinical and Engineering Research on Neurorehabilitation II

Based on a 1994 workshop, this volume explores pathophysiology, pain and dysfunction. It discusses the effects of repetitive motion on connective tissue, muscle and nerve; offers suggestions for determining whether the disorder is job related; and addresses diagnostic and treatment issues.

Hand and Upper Extremity Rehabilitation

This issue of Hand Clinics, guest edited by Dr. Joshua Adkinson, will cover several important aspects of the Management of Spastic Conditions of the Upper Extremity. At the invitation of consulting editor Dr. Kevin Chung, Dr. Adkinson put together a comprehensive issue, which covers: Etiologies; Assessment measures and motion analysis; Non-surgical treatment options; Surgical management of spasticity of the thumb and fingers, wrist and forearm, elbow, and shoulder; Management of spastic upper extremity joint contractures; Technical pearls of tendon transfers; Selective neurotomy; Neurosurgical management; Outcomes after surgical treatment; The future of upper extremity spasticity management; and Management of spinal cord injury-induced upper limb spasticity, among others.

Upper Extremity Motion Assessment in Adult Ischemic Stroke Patients: A 3-D Kinematic Model

Long recognized as an essential reference for therapists and surgeons treating the
Read Book Upper Extremity Motion Assessment In Adult Ischemic Stroke

hand and the upper extremity, Rehabilitation of the Hand and Upper Extremity helps you return your patients to optimal function of the hand, wrist, elbow, arm, and shoulder. Leading hand surgeons and hand therapists detail the pathophysiology, diagnosis, and management of virtually any disorder you’re likely to see, with a focus on evidence-based and efficient patient care. Extensively referenced and abundantly illustrated, the 7th Edition of this reference is a "must read" for surgeons interested in the upper extremity, hand therapists from physical therapy or occupational therapy backgrounds, anyone preparing for the CHT examination, and all hand therapy clinics. Offers comprehensive coverage of all aspects of hand and upper extremity disorders, forming a complete picture for all members of the hand team—surgeons and therapists alike. Provides multidisciplinary, global guidance from a Who's Who list of hand surgery and hand therapy editors and contributors. Includes many features new to this edition: considerations for pediatric therapy; a surgical management focus on the most commonly used techniques; new timing of therapeutic interventions relative to healing characteristics; and in-print references wherever possible. Features more than a dozen new chapters covering Platelet-Rich Protein Injections, Restoration of Function After Adult Brachial Plexus Injury, Acute Management of Upper Extremity Amputation, Medical Management for Pain, Proprioception in Hand Rehabilitation, Graded Motor Imagery, and more. Provides access to an extensive video library that covers common nerve injuries, hand and upper extremity transplantation, surgical and therapy management, and much more. Helps you keep up with the latest advances in arthroscopy, imaging, vascular disorders, tendon transfers, fingertip injuries, mobilization techniques, traumatic brachial plexus injuries, and pain management—all clearly depicted with full-color illustrations and photographs.

Stroke Rehabilitation

OCCUPATIONAL THERAPY EFFICACY ON UPPER-EXTREMITY FUNCTIONAL OUTCOMES AFTER STROKE

Au0161ra Adomaviu010dienu0117 (Assoc.prof., PhD,OT), Agnu0117 Grigonytu0117 (PhD student,OT)Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Vilnius UniversityIntroduction. In recent years is increasing interest in using robotic devices in occupational therapy (OT) to assist in movement training following neurologic injuries such as stroke. Armeou00aeSpring is the robotic device creates a permissive environment which allows individuals to practice reaching and drawing movements, and itu2019s promotes recovery of hand motor functions.Purpose. To evaluate the efficacy of robotics therapy (Armeou00aeSpring) in OT for motor hand function recovery in stroke patients.Materials and methods. Totally were included 34 post-stroke patients 64.5u00b15.3 years old in 8.41 u00b1 4.27 weeks after stroke onset. Patients were randomly divided in two groups u2013 the experimental group with Armeo Spring robot-assisted trainer (n=17) and a control group with traditional OT methods (n=19). The duration of sessions with robot devices was 45-60 min/day (10 sessions in total). Hand motor function recovery was compared using the Fugl-Meyer...
Read Book Upper Extremity Motion Assessment In Adult Ischemic Stroke

Assessment Upper Extremity (FMA-UL), Modified Ashworth Scale (MAS), Hand grip strength (dynamometry, HD), Hand Tapping test (HTT), Box and Block Test (BBT), and Range of Motion (ROM). Results. During OT program, was reached significant improvement (time effect) for all hand motor functions (P