The effect of corrosion in the oil industry leads to the failure of parts. This failure results in shutting down the plant to clean the facility. The annual cost of corrosion to the oil and gas industry in the United States alone is estimated at $27 billion (According to NACE International)—leading some to estimate the global annual cost to the oil and gas industry as exceeding $60 billion. In addition, corrosion commonly causes serious environmental problems, such as spills and releases. An essential resource for all those who are involved in the corrosion management of oil and gas infrastructure, Corrosion Control in the Oil and Gas Industry provides engineers and designers with the tools and methods to design and implement comprehensive corrosion-management programs for oil and gas infrastructures. The book addresses all segments of the industry, including production, transmission, storage, refining and distribution. Selects cost-effective methods to control corrosion. Quantitatively measures and estimates corrosion rates. Treats oil and gas infrastructures as systems in order to avoid the impacts that changes to one segment if a corrosion management program may have on others. Provides a gateway to more than 1,000 industry best practices and international standards. Includes a detailed summary of the structural status of the aging force, Force operational fleet are 25 years old or older. A few of these will be replaced with new aircraft, but many are expected to remain in service an additional 25 years or more. This book equips upstream and midstream corrosion professionals in the oil and gas industry with the most advanced collection of topics and solutions to responsibly help solve today’s oil and gas corrosion challenges. Covers the latest in corrosion mitigation techniques, such as corrosion inhibitors, biocides, non-metallics, coatings, and modeling and prediction. Solves knowledge gaps with the most current technology and discoveries on specific corrosion mechanisms, highlighting where future research and industry efforts should be concentrated. Achieves practical and balanced understanding with a full spectrum of subjects presented from multiple academic and world-renowned contributors in the industry. Many of the aircraft that form the backbone of the U.S. Air Force operational fleet are 25 years old or older. A few of these will be replaced with new aircraft, but many are expected to remain in service an additional 25 years or more. This book provides a strategy to address the technical needs and priorities associated with the Air Force’s aging airframe structures. It includes a detailed summary of the structural status of the aging force, identification of key technical issues, recommendations for near-term engineering and management actions, and prioritized near-term and long-term research recommendations. Covers the engineering aspects of corrosion and materials in hydrocarbon production. This book captures the current understanding of corrosion processes in upstream operations and provides a brief overview of parameters and measures needed for optimum design of facilities. It focuses on internal corrosion occurring in hydrocarbon production environments and the key issues affecting its occurrence, including: the types and morphology of corrosion damage; principal metallic materials deployed; and mitigating measures to optimise its occurrence. The book also highlights important areas of progress and challenges, and looks toward the future of research and development to enable improved and economical design of facilities for oil and gas production. Written for both those familiar and unfamiliar with the subject—and by two authors with more than 60 years combined industry experience—this book covers everything from Corrosion Resistant Alloys (CRAs) to internal metal loss corrosion threats, corrosion in injection systems to microbiologically influenced corrosion, corrosion risk analysis to corrosion and integrity management, and more, notably: Comprehensively covers the engineering aspects of corrosion and materials in hydrocarbon production. Written by two, renowned experts in the field. Offers practical guide to those unfamiliar with the subject whilst providing a focused roadmap to addressing the topics in a precise and methodical manner. Covers all aspects of corrosion threat.
and remedial and mitigation measures in upstream hydrocarbon production applicable to sub-surface, surface, and transportation facilities. Outlines technology challenges that need further research as a pre-cursor to moving the industry forward. Operational and Engineering Aspects of Corrosion and Materials in Hydrocarbon Production is an excellent guide for both practicing materials and corrosion engineers working in hydrocarbons production as well as those entering the area who may not be fully familiar with the subject. The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft. Water utilities often do not know the specific cause of external corrosion observed on their water mains, and consequently, the chosen preventative measure may not work effectively. Historically, these choices are based on data from other industries (e.g., gas and oil) and may not be suitable for the water industry. Corrosion of metallic pipes can be caused by a variety of mechanisms, each of which requires a different solution. Determining which corrosion mechanism is at work is not a simple matter, because the resulting pipe damage looks similar for all of them. The failure to properly identify corrosion sources may produce prevention systems that are ineffective or do not last. For example, it is not effective to install an anode bag on a main that has a bacteriological corrosion problem. Similarly, an anode bag installed to reduce corrosion caused by a stray impressed current would be quickly used up and would provide only short-term protection. Much recent research on corrosion has focused on internal corrosion, primarily related to water-quality issues, such as lead and copper control and red water. This project will examine external corrosion, which affects the structural integrity of the pipe and makes it vulnerable to leaks and breakage. After identifying the causes of external corrosion, the study will find economical solutions for each type of corrosion and verify them through field trials. The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Ductile iron pipe (DIP) was introduced about 50 years ago as a more economical and better-performing product for water transmission and distribution. As with iron or steel pipes, DIP is subject to corrosion, the rate of which depends on the environment in which the pipe is placed. Corrosion mitigation protocols are employed to slow the corrosion process to an acceptable rate for the application. When to use corrosion mitigation systems, and which system, depends on the corrosivity of the soils in which the pipeline is buried. The Bureau of Reclamation’s specification for DIP in highly corrosive soil has been contested by some as an overly stringent requirement, necessitating the pipe to be modified from its as-manufactured state and thereby adding unnecessary cost to a pipeline system. This book evaluates the specifications in question and presents findings and recommendations. Specifically, the authoring committee answers the following questions: Does polyethylene encasement with cathodic protection work on ductile iron pipe installed in highly corrosive soils? Will polyethylene encasement and cathodic protection reliably provide a minimum service life of 50 years? What possible alternative corrosion mitigation methods for DIP would provide a service life of 50 years?

Copyright code: 273fb895c502c3096baca81c7865eca4